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The decay of a steady acoustic field in an enclosure is studied both theoretically and

experimentally. Our main result is that the initial part of any local sound decay is driven

by an exponential function of time whose rate constant is equal in modulus to the

inverse of the mean energy velocity divergence. This is empirically demonstrated by

reverberation time is strictly connected with the sound energy velocity field and can be

determined from its differential properties. A further property of the mean energy

velocity is found: it is related not only with the reverberation time, but also with the

angular momentum density and with the non-uniform distribution of energy.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Sound energy streamlines have been firstly introduced as a new construct in acoustics, based on experimental evidence,
by Waterhouse [1] in 1985. In the following years the more and more reliable experimental data showing circulation of
sound energy in steady state led the same author to study energy vortices from different points of views [2,3]. About one
decade later, the authors of the present paper have proposed a systematic use in acoustics of the concept of mean energy
velocity [4,5] and one of them started to tantalize himself about the importance of this quantity for a refinement of
reverberation time concept in acoustics [6]. At the end of the 1990s, a sharp description of intensity and vorticity
streamlines in 3-D sound fields has been given in Ref. [7]. On the other hand, even earlier, a new and very effective method
of measuring reverberation time was proposed by Schroeder [8], who also has designed later a device, showing that the
energy of acoustic fields can rotate [9], giving rise to angular momentum. The purpose of the present paper is to outline a
strict connection between energy velocity, reverberation time and angular momentum, so offering a unified physical frame
where the commonly used relationships between reverberation time and absorption coefficient of the statistical model can
be unambiguously checked.

After the definition of the average energy trajectories in Section 2, the analysis of sound energy density evolution along
them will follow in Section 3. The purpose of Section 4 is to recall some properties of angular momentum in acoustic fields
and to state its relationship with the solenoidal and irrotational parts of the energy velocity field. The experimental
evidence that the theory of Section 3 is unambiguously linked to reverberation time is reported in Section 5. Section 6 is
devoted to the introduction and quantitative definition of the concept of wave conductance and to analyze its relationship
with energy velocity and angular momentum. Finally, the conclusion that a definition of reverberation time in acoustics
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can be given in terms of the divergence of the energy velocity and that the measure of this quantity could be standardized
thanks to hyper-intensimetric measurements and fine calibrations of sound intensity probes, is drawn in the last section.

2. The average energy trajectories

We start from the acoustic energy conservation law, written in the form

qw

qt
þ= � j ¼ 0; (1)

where the energy density w and the energy flux density j (sound intensity) are defined in terms of the acoustic field
variables, the pressure p and the velocity v, as

wðx; tÞ ¼
1

2
r0

pðx; tÞ

r0c

� �2

þ vðx; tÞ2
" #

; jðx; tÞ ¼ pðx; tÞvðx; tÞ: (2)

Here, x and t are space and time coordinates, c the speed of sound and r0 the equilibrium density of the gas medium.
Since the instantaneous quantities jðx; tÞ and wðx; tÞ are too rapidly varying functions of time, it is convenient to perform on
them some kind of average. Although all the considerations of this section hold for all kinds of average, we shall be
concerned later with the stationary average, defined by

/uSðxÞ ¼ lim
T-1

1

2T

Z þT

�T
uðx; tÞdt

or

/uSðxÞ ¼ lim
T-1

1

T

Z 0

�T
uðx; tÞdt

for any function u. In the present paper the only properties which shall be required to any averaging procedure / �S are

qu

qt

� �
¼

q/uS
qt

; /= � uS ¼ = �/uS; /=4uS ¼ =4/uS;

where uðx; tÞ and uðx; tÞ are any scalar, respectively, vector field. All usual averaging procedures, such as Schroeder’s back-
integration, stationary and space average share these properties. Thus, by averaging (1), we get

qW

qt
þ= � J ¼ 0; (3)

where W¼
def/wS, J¼

def/jS. Of course, in the case of a stationary averages the further property

q/uS
qt
¼ 0

holds for any generic field u and thus Eq. (3) reduces to the well known property = � J ¼ 0 of the so called active sound
intensity J.

As explained in [4], the instantaneous quantities jðx; tÞ and wðx; tÞ can be combined to obtain a new vector field u ¼ j=w,
which is interpreted as energy velocity. This instantaneous vector field can be averaged in turn to obtain the average
quantity /j=wS. However, we shall not adopt this definition of mean energy velocity, because its direction is, in general,
different than the direction of the mean momentum of the acoustic field, which is

/qS ¼
/jS
c2
¼ Q : (4)

Therefore, the adopted definition will be the following.

Definition 1. The average energy velocity U is defined as the ratio J=W:

U ¼
/jS
/wS

¼
J

W
¼

c2Q

W
: (5)

We are now in the position for putting forward the analogy between a fluid motion and sound energy motion. This is
done by assimilating the fluid mass density to the average sound energy density rfluid2/wSenergy and the fluid velocity to
the average sound energy velocity vfluid2Uenergy, so as to define in strict analogy to fluid dynamics the concept of energy
trajectories. In fact, the energy trajectory initially (t ¼ 0) starting at point x0,

x ¼ sðx0; tÞ

is defined by the differential equation with initial condition

dsðx0; tÞ

dt
¼ Uðsðx0; tÞ; tÞ; sðx0;0Þ ¼ x0: (6)
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It is seen from this equation that every point x0 in the domain occupied by the acoustic field can be thought as a starting
point of a trajectory, representing the average motion of energy in the field.

The stationary average will be preferred here to other kinds of average, because it has a remarkable property: the energy
trajectories coincide with energy streamlines [11].

3. Energy density evolution along trajectories and reverberation time

We first prove a theorem, stating how stationary energy density in an enclosure evolves in time, following energy
trajectories. This theorem could be exploited, as we shall see in Section 5, for a new procedure of defining and measuring
the reverberation time and exhibits, in our opinion, a better physical foundation than the current ones. In fact, the proof of
this theorem is a direct consequence of one of the pillars of linear acoustics, the continuity equation (3) that—once
reformulated in terms of the energy velocity as defined in (5)—can be clearly interpreted as the transport equation of sound
energy along steady streamlines, coinciding with the trajectories of sound energy particles (body energy). The practical
important consequence of this approach is that it is always possible to foresee the initial rate of any transient sound energy
decay caused by the breakdown of the steady state condition by means of a local measurement of stationary energetic
properties of the sound field. Let t ¼ 0 be the arbitrary time when the average energy density (energy particle) passes
through the point sðx0;0Þ ¼ x0 of its (stationary) trajectory and suppose that in the same instant the energy decay begins at
x0 as a consequence of the switching off of the sources. Then the following theorem holds.

Theorem 2. The time evolution of the average energy density W in a neighborhood of t ¼ 0 along the energy trajectory starting

at any point x0 is given by an exponential law:

Wðsðx0; tÞ; tÞ ¼W0exp
�t

t0
; (7)

where

W0 ¼Wðx0;0Þ; t0 ¼
1

= � Uðx;0Þjx0

: (8)

Proof. We can eliminate J from Eq. (3) by introducing there the velocity U:

qW

qt
þ= � ðWUÞ ¼ 0:

By expanding the divergence and moving to the right hand side the term containing = � U, this becomes

qW

qt
þ U �=W ¼ �W= � U:

After division by W, this equation can be rewritten as

d lnW

dt
¼ �= � U; (9)

where

d

dt
¼
def q

qt
þ U �=

is the Lagrangian differentiation operator along the energy trajectory defined by (6). Eq. (9) can be integrated in an
infinitesimal neighborhood of t ¼ 0. To this purpose, we introduce the function of time

D0ðtÞ¼
def= � Uðx; tÞjx¼sðx0 ;tÞ;

representing the divergence of U along the trajectory. Assuming D0ðtÞ to be infinitely differentiable, this function can be
expanded into a Taylor series around t ¼ 0, so that

D0ðtÞ ¼ D0ð0Þ þ D0
0 ð0Þt þ � � � ;

with D0ð0Þ ¼ = � Uðx0;0Þ. Introducing the expansion of D0 into Eq. (9), we get

d lnW

dt
¼ �½D0ð0Þ þ D0

0 ð0Þt þ � � ��;

whose solution is

Wðsðx0; tÞ; tÞ ¼W0expf�½D0ð0Þt þ
1
2D0
0 ð0Þt2 þ � � ��g: (10)

This can be written

Wðsðx0; tÞ; tÞ ¼W0exp½�D0ð0Þt�VðtÞ;
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where VðtÞ ¼ 1þOðt2Þ, as t-0. Therefore, in this limit we have

Wðsðx0; tÞ; tÞ ¼W0exp½�D0ð0Þt�: & (11)

The theorem cannot say more on the size of the neighborhood of t ¼ 0, where the Eq. (11) holds. It simply states that
whenever the energy particle density undergoes an instantaneous variation during its stationary motion, the first-order
approximation to this variation is given by an exponential function of time having a rate constant equal to the divergence of
the energy particle velocity. That is all.

This property, which could seem to be of limited interest in stationary fields, becomes instead a very useful practical
tool when used for estimating the initial slope of any sound decay starting in x0 at the instant t ¼ 0. This fact will be
experimentally tested in Section 5 for several carefully chosen acoustic situations. In other words, the importance of the
above stated theorem is that the first-order exponential approximation to the steady-state energy evolution just before
the decay, remains unchanged for a while even during the decay itself, so allowing to use the same exponential
approximation also for guessing the initial slope of the decay. The generality of this statement is truly impressive, keeping
in mind that all practical situations of interest in room acoustics are characterized by exponential-like decays [12–14], and
consequently, in these cases, the decay rate constant determined from t0 is indeed a good estimate of the most significant
part of the decay. The worst cases are met, instead, in acoustical situations when energy decays in bizarre ways, appearing
to be very far from exponential-like decays. These unpleasant situations are analyzed in detail in Section 5, finding that
even in these cases the above general statement holds true.

We propose, therefore, a precise definition of initial decay time: it is the time t, belonging to any interval 0otot1, when
the sound energy density decay displays an exponential-like time evolution similar to Eq. (11), but on a statistical and not
instantaneous basis.

4. Does the angular momentum of acoustic fields influence the reverberation time?

All acoustic fields contain, besides energy, linear momentum, as well as angular momentum. We have already
developed a theoretical treatment of this subject in [10] and earlier work was done by other authors [1–3,9]. Nevertheless,
we think it would be convenient for the reader to have here a short account of the main concepts, both for better analyzing
the connection between reverberation time and angular momentum and in view of the developments of Section 6.

As said above, the density of linear momentum is given by q ¼ j=c2 and its average value by Q ¼ J=c2, Eq. (4). The
conservation law in free space is [10]

qq

qt
þ= �t ¼ 0;

where t is the acoustic stress tensor, representing the momentum flux density, whose Cartesian components are

tij ¼ r0vivj þ
1

2

p2

r0c2
� r0v2

� �
dij:

The same equation holds also for the averages

qQ

qt
þ= � T ¼ 0;

where T ¼ /tS.
The linear momentum density q gives rise to the angular momentum density l ¼ x04q with respect to a fixed point x0.

Averaging this expression, one obtains

/lS ¼ L ¼ x04Q ; (12)

with the conservation law:

x04
qQ

qt
þ= � T

� �
¼ 0:

Typical examples of angular momentum of acoustic fields have been treated in Refs. [2,3,9]. Schroeder [9] realized an
experimental device for the direct detection of rotational acoustic energy; it is based on two loudspeakers assembled
orthogonally to each other, exciting the axial modes in a box of base l� l and height h. He fed the loudspeakers by two
sinusoidal signals having the same circular frequency o and a phase difference j, showing that rotating sound energy sets
a small absorbing wheel into rotation around the z�axis. If the walls are considered to be perfectly reflective, it is easy to
find from Eq. (12) that the average angular momentum density with respect to the fixed point x0 ¼ x0ex þ y0ey þ z0ez is

Lðx; y; zÞ ¼
1

c2
½x0Jyðx; y; zÞ � y0Jxðx; y; zÞ�ez

¼
1

2
r0cðkAÞ2sinðjÞ½x0sinðkxÞcosðkyÞ þ y0cosðkxÞsinðkyÞ�ez; �

l

2
rxr

l

2
; �

l

2
ryr

l

2
; 0rzrh; (13)
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where only the two lowest modes have been included and the boundary conditions imply k ¼ p=l ¼ o=c. The average
intensity is

Jðx; y; zÞ ¼ 1
2r0cðoAÞ2½cosðkxÞsinðkyÞex � sinðkxÞcosðkyÞey�sinj;

where A is the amplitude of both modes. The average energy velocity of the field is

Uðx; y; zÞ ¼
c½cosðkxÞsinðkyÞex � sinðkxÞcosðkyÞey�sinj

1þ 1
2 sinðkxÞsinðkyÞcosj

:

The stationary average angular velocity X of acoustic energy can be expressed in terms of the intensity J and energy
density W as

XðxÞ ¼
1

2
=4UðxÞ ¼

1

2
=4

JðxÞ

WðxÞ
¼

=4J þ J4=lnW

2W
: (14)

Writing this formula as

X ¼ X1 þX2;

with

X1¼
def =4J

2W
; X2¼

def J4=lnW

2W
; (15)

it is seen that the expression for X1 is that of the statistical model of diffuse sound field, which assumes =W ¼ 0, i.e. a
uniform energy distribution; according to the result quoted by Waterhouse [3], stating that =4J ¼ o2L, this term vanishes
with the angular momentum density L:

X1 ¼
o2L

2W
:

The term X2 is due to non-uniformity of energy distribution.
We have just seen in Section 3 how the divergence of the energy velocity is strictly connected with decay time of the

field in an enclosure. Since any vector field can be decomposed into the sum of an irrotational and a solenoidal one and the
field itself can be reconstructed from its divergence and its curl, it is natural to look for an expression relating the energy
velocity field to the reverberation time and the angular momentum of the field.

Thus, we can write

U ¼ Uirr þ Usol; =4Uirr¼
def

0; = � Usol¼
def

0: (16)

The reverberation time depends only on Uirr, since

= � U ¼ = � ðUirr þ UsolÞ ¼ = � Uirr;

while the rotation of energy depends only on Usol, because

=4U ¼ =4ðUirr þ UsolÞ ¼ =4Usol:

It is then clear that the irrotational component Uirr of the energy velocity U is the only component of U related to the
energy decay in any enclosure.

5. Experimental estimate of reverberation time from the exponential initial decay

Let us now give the experimental evidence that any statistical decay of sound from its steady state can be well guessed
by an exponential function of time similar to (7), expð�ktÞ, in general with k ¼ j1=t0j. In fact, according to the energy
conservation law, a complete decay of sound from any steady state is only permitted if k40. More explicitly, the energy
density at a given point according to Schroeder’s picture cannot increase in time. On the other hand, the stationary
energy density W along a trajectory does not share this property. As a consequence, the quantity = � U is not expected to be
necessarily positive, although it was in all cases we have measured. For this reason, we have introduced the definition
k¼

def
j= � Uðx;0Þj for the decay constant.
We shall call k the local rate constant of the exponential initial decay of sound and abandon, in this section, the

stationary view of energy motion along trajectories in favor of a transient picture, which more closely describes the sound
decay.

As known, the relationship between the stationary and transient states of sound is numerically synthesized in the
Schroeder’s energy curve derivable from back-integration of the room impulse response [8]. The systematic application of
this almost 50 years old finding, to both pressure and air particle velocity impulse responses measured in any room, allows
nowadays to develop a robust and precise experimental method for defining and measuring the reverberation time using
intensimetric techniques. In fact, as it will be shown in the following, the only thing we have to do, is to carry out a
precision measurement of k, i.e. the absolute value of the divergence of the stationary energy velocity field at the same
point where the reverberation time has to be estimated.
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In order to measure k from the divergence of the energy velocity D0ð0Þ appearing in Eq. (11), the following expression
has been used:

k :¼ jD0ð0Þj ¼ j= � Uðx;0Þjx¼x0
j ¼ = �

JðxÞ

WðxÞ

����
x¼x0

�����
����� ¼ � 1

W2ðx0Þ

X3

i¼1

Ji
qW

qxi

����
x¼x0

�����
�����; (17)

where we have taken into account that = � J ¼ 0. The evaluation of k from experimental data requires at least two
simultaneous measurements of the energy density along each spatial dimension in the neighborhood of the measurement
point. This has been done by means of a well calibrated pair of pressure–velocity sound intensity probes (i.e. a special array
of p2v probes, which we call hyper-intensimetric probe: see Figs. 1 and 2). In fact, previously to the here reported
measurement campaign, each axial sound intensity probe used for experiments has undergone a fine calibration process
[15]. Our calibration process is similar in principle to the ones reported in literature [16] but using as a reference field of
known impedance, the sound field generated inside a ‘‘semi-infinite’’ acoustical waveguide having a high frequency cutoff
of about 10 kHz and a length of 84 m. As well documented in [17], the field within such a waveguide is characterized by a
constant pure resistive load equal to the characteristic impedance of air. This forces the sound to propagate in the form of a
plane progressive wave, with no reflected wave, whose amplitude—due to thermoviscous losses occurring in the boundary
layer very near to the internal cylindrical surface—attenuates, of course, with increasing distance from the sound source,
without changing the wave impedance.

The robustness of the resulting experimental methodology for measuring k has been checked firstly in the worst
conditions like those encountered in 1-D environments, where sound energy abruptly drops during the decay. Once this
Fig. 1. The special mount with the pair of match size axial sound intensity probes: during the measurement the two probes are aligned along any

coordinate axis. Note the anemometric bridge of the two velocity sensors.

Fig. 2. The pair of match size axial sound intensity probes assembled in the hyper-probe are mounted 2.5 cm apart from each other.
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shock test was successfully passed, the same methodology has been applied to a more traditional 3-D environment (the
authors’ 104 m3 laboratory) where, according to the common practice of room acoustics measurements, it has been found
that the exponential curve obtained from k, nicely fits in the Schroeder’s energy curve.

Here follows the report of obtained results.
5.1. 1-D case study

The test environment for 1-D experiments was set up with a 4 m long tube having a square section of 0:28� 0:28 m2 and
equipped with a loudspeaker source mounted at one end. The other end of the tube has been furnished with boundaries of
different sound absorbing power: a foam rubber panel, a wooden panel or, more simply, by leaving open its termination
(open end).

In order to excite only longitudinal modes of the air inside the tube, the loudspeaker source was fed by a 50–600 Hz
band swept-sine signal. A finely calibrated hyper-intensity probe was located along the axis of the tube at 1.5 m from the
loudspeaker. Two pair of pressure and velocity signals for a total of four signals, were captured by means of this special
probe and then processed with proper deconvolution MatLabTM routines in order to calculate the respective pairs of
pressure and velocity impulse responses. As shown in Fig. 2, the distance between the two match size MicroflownTM axial
intensity probes assembled in the hyper-probe mount is 2.5 cm.
Table 1

Steady-state energy level, divergence of energy velocity and k�reverberation time for all case studies.

1-D Rubber 1-D Open 1-D Wood 3-D Small room

LSSE (dB) 112.9 114.9 115.6 101.3

k 129.40 35.33 36.64 23.96

Tk60 (s) 0.11 0.39 0.38 0.58

Fig. 3. 1-D case study for foam rubber.
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The raw pressure and air velocity impulse responses measured in the above described 1-D acoustic system have
been finally filtered by using calibration data obtained with the above described waveguide methodology. It has been
verified that the calibration process described in [15] allows to determine the average value of the sound energy density
just before its decay with a maximum deviation of �0:53 dB relative to the first sample value of the Schroeder’s energy
curve for all 1-D case studies here reported. The corrected values have thus been used as the steady-state energy values, to
which, both the Schroeder’s energy curves and the exponential curves obtained from k for each case study have been
normalized. The energy levels of these steady-state values expressed in dB relative to 10�12 J=m3 are reported in Table 1
as LSSE.

In the 1-D case considered here, the expression (17) has been approximated by the finite-difference ratio:

k �
1

Wðx0Þ
2
�

J1ðx0Þ½Wðx0 þ DxÞ �Wðx0 �DxÞ�

2Dx

����
����; (18)

where Dx ¼ 1:25 cm. The numerical post-processing of the two sets of pressure and velocity impulse responses calculated
from signals coming from the calibrated sound intensity hyper-probe, has been implemented using a MAPLETM worksheet.
The algorithm calculates the steady-state quantities appearing on the right side of Eq. (18) using the Schroeder’s back
integration averaging process and determines the value of the rate constant k, so allowing the direct comparison of the
energy exponential decay foreseen by k with the plot of the experimental decay curve (Schroeder’s energy curve) both
normalized to the steady state value of the energy density assumed as the starting value of the decay.

Obtained results are reported in Figs. 3–5 respectively for the foam rubber, open end, and wooden panel case. In each
figure the (a) labeled plots show the comparison between exponential decays calculated using the rate constant k of Eq.
(18) and the corresponding Schroeder’s energy curve. In the (b) labeled plots of each figure, the logarithmic decays are
shown, explicitly marking the �5 and �35 dB line levels in order to allow the easy comparison with the ISO 3382 standard.
In the (c) labeled plots of each case study, the �10 dB decay has been zoomed-in so to render a sharper picture of the
excellent experimental fitting of the exponential decay foreseen by k with the Schroeder’s one. Finally, in the (d) labeled
plots, the very beginning of any decay has been extra zoomed-in so making absolutely clear that there is no general relation
between the slope of the exponential decay and the initial slope of the Schroeder’s energy curve. Simply the rate constant k,
calculated in the stationary state when the sound source is in a dynamic equilibrium with the sound field, optimally
Fig. 4. 1-D case study for open end.
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addresses the statistical decay starting at the measurement point when the effect of the sound source switching-off,
abruptly appears. This is of course a catastrophic event during which the coincidence of the energy particle trajectories
with power streamlines gets lost. Anyway, it is evident from the (c) labeled plots that this is not an instantaneous process
since a time t1 exists, such that 0otot1 when the statistical local decay is well driven by the exponential curve. In the
three reported case studies t1 is always empirically found to be at least 5� 10�3 s.

5.2. 3-D case study

As said above, the chosen test environment for 3-D experiments was the authors’ acoustics laboratory collocated in the
104 m3 room G115 of the Physics Department. The measurement set-up has been arranged there supplying the loudspeaker
source with a swept-sine signal in the 50–5000 Hz band. Given the 3-D nature of the generated sound field, the hyper-
intensimetric probe of Fig. 2 was mounted on a special support allowing to align the hyper-probe axis along the x; y; z�axes
of a Cartesian coordinate system (see Fig. 6).

The room is a parallelepiped with a stoneware tile floor (5:92� 5:48 m2), a plaster panel ceiling and concrete brick walls.
It is mainly furnished with glass, hard plastic and metal. The measurement point has been located at about 2 m from the
source in front of a large windows (3:6� 1:5 m2) closed with double-glazed panels of glass.

When measurements in 3-D sound fields have to be carried out, the formula for computing the value of k has to take
into account the calculation of the three components of the gradient of energy density so generalizing according to Eq. (17)
the finite difference approximation given by (18). Also the calibration process has to be extended to the three pairs of raw
p2v impulse responses sampled along the x,y,z-axes resulting in a total of 12 measured and calibrated impulse responses.
Given the time invariant nature of the acoustic system the measurement process has been accomplished in three
subsequent stages having care of keeping unchanged the boundary conditions.

Fig. 7 shows the obtained results ordered and labeled as for 1-D case studies. The interesting thing to remark here
looking at the (c) labeled plot is the impressive fit that the k-curve operates over the Schroeder’s one in the ½0; t1 � 0:04 s�
interval. This is well confirmed here even by the extra-zoomed plot reported in the (d) frame where the Schroeder’s curve
bounces sharply a least three times against the k-curve in less than two-hundredth of a second.
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Finally the deviation of �0:65 dB relative to the first sampled value of the Schroeder’s energy curve got for this case
study, demonstrated the robustness of the k-algorithm even in 3-D environments.

We close this section summarizing in Table 1 results obtained for LSSE, k and the associated k-reverberation time Tk60

extrapolated from the exponential initial decay for all 1-D and 3-D cases studied here.

6. The concept of wave conductance and its connection to reverberation time and rotational energy

Considering the energy propagation in sound fields, the usual definition of impedance in acoustics can be interpreted in
the following physical terms: it is the ratio of the power dP per unit area, crossing normally the surface element with
normal n̂ and area dS, to the energy per unit mass, which is usually taken to be simply twice the average kinetic energy,
i.e. v2:

zðx; t; n̂Þ ¼
1

v2

dP
dS
¼

n̂ � j

v2
:
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In fact, in the case of a plane, purely progressive wave, taking as n̂ the direction of J, this definition leads to the familiar
result

zðx; t; n̂Þ ¼
jpðx; tÞj

jvðx; tÞj
¼ r0c ¼ z0:

Needless to say, for a different kind of wave, the impedance is neither given by the ratio jpj=jvj, nor by the constant z0; it
depends on the position x and can be singular, as happens, for instance, to a stationary wave in the nodes of v.

The singularities can be avoided if we take in place of v2 the exact value of the energy per unit mass, wm, (mass-specific
energy), including also the part proportional to p2:

wm ¼
w

r0

¼
1

2
v2 þ

p

z0

� �2
" #

:

Thus, it is convenient to define a new quantity, which we propose to call wave conductance S, as the ratio of the mean power
dP per unit area, crossing the surface element of normal n̂ and area dS to the mass-specific average energy of the field
itself. Thus, we write

Sðx; n̂Þ ¼
r0

/wS
dP
dS
¼

2

v2 þ
p

z0

� �2
* +dP

dS
¼

2n̂ �/jS

v2 þ
p

z0

� �2
* + :

Another advantage of introducing S is that this quantity can be written quite simply for all kind of fields, using the
parameter Z, introduced in Ref. [5]:

Z¼def j/jSj
c/wS

: (19)

The most obvious physical meaning of Z is that of energy velocity in units of c. It follows that the wave conductance in the
direction of /jS, n̂ ¼ /jS=j/jSj, is proportional to Z, the proportionality constant being just the impedance z0 of a purely
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progressive plane wave:

Sðx; n̂Þ ¼ z0ZðxÞrz0:

According to the above construction, it is seen that the physical meaning of Z is that of a fraction of the total energy carried
by a progressive-like wave, moving ahead with speed c in the direction of /jS.

Let us now discover the connection between S and the reverberation time, which is connected in turn to = � U and to the
angular momentum, related to =4U.

Starting from the decomposition (16), we know that there exist a scalar field HðxÞ and a vector field GðxÞ, such that the
two parts of the energy velocity field can be represented as

UirrðxÞ ¼ =HðxÞ; UsolðxÞ ¼ =4GðxÞ: (20)

The energy-velocity potentials H and G are not uniquely defined by these conditions: the addition to H of any constant
(with respect to x), or any irrotational vector to G do not change Eq. (20). The vector field G, on its turn, can also undergo a
decomposition of type (16), therefore, the generality of the treatment is not reduced by imposing on G the condition
= � G ¼ 0. If KðxÞ and RðxÞ are a given scalar and a given vector field, substituting conditions (20) into the equations

= � U ¼ KðxÞ; =4U ¼ RðxÞ

and taking into account the identity =4ð=4GÞ � =ð= � GÞ � DG, we find that the potentials must satisfy Poisson’s
equations:

DHðxÞ ¼ KðxÞ;

�DGðxÞ ¼ RðxÞ:

The energy velocity field UðxÞ is determined by solving these equations with the proper boundary conditions. In the case of
the unbounded space, the boundary conditions are replaced by asymptotic conditions, which are HðxÞ;GðxÞ-0; ðjxj-1Þ,
supposing that K and R decrease at infinity fast enough. The corresponding Green’s function is

G1ðx; yÞ ¼
1

4pjx� yj
;

and the solutions:

HðxÞ ¼

Z
R3

KðyÞd3y

4pjx� yj
; GðxÞ ¼ �

Z
R3

RðyÞd3y

4pjx� yj
:

By calculating the gradient of H and the curl of G, we find the final result

UðxÞ ¼
Z
R3

½KðyÞ � RðyÞ4�ðx� yÞd3y

4pjx� yj3
; x 2 R3;

expressing the velocity U in terms of its divergence K and its curl R.
Now, the divergence K is just the reciprocal of the time constant t0ðxÞ ¼ ½= � Uðx;0Þ�

�1, characterizing the energy
evolution in steady states, which is related to the local rate constant of the exponential initial decay by k ¼ j1=t0j giving the
k-reverberation time as

Tk60 ¼
6lnð10Þ

k
;

while (see Eq. (14)) the curl R can be expressed in terms of intensity J and energy density W as

RðxÞ ¼ =4
JðxÞ

WðxÞ
¼

=4JðxÞ þ JðxÞ4=lnWðxÞ

WðxÞ
:

Taking into account Eq. (15), the average energy velocity U can thus be expressed as

UðxÞ ¼

Z
R3

1

t0ðyÞ
þ 2½X1ðyÞ þX2ðyÞ�4

� �
x� y

4pjx� yj3
d3y;

so clarifying that, when in a steady state, the sound radiation flows along U�trajectories characterized by a wave
conductance:

SðxÞ ¼ r0

Z
R3

1

t0ðyÞ
þ 2½X1ðyÞ þX2ðyÞ�4

� �
x� y

4pjx� yj3
d3y

����
����:

We can conclude that the conduction of sound radiation by any sound field, not only depends on k-reverberation time
through t0, but also on angular momentum, through X1, and on the non-homogeneous distribution of energy in the field,
through X2.

A similar result, here derived for a free sound field, can be easily extended to the case of a bounded enclosure V. In this
case, in the relevant expressions, one has only to replace the Green’s function G1 by the Green’s function of the Laplace
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operator D with suitable boundary conditions on the surface enclosing V, GV ðx; yÞ:

UðxÞ ¼
Z

V

1

t0ðyÞ
þ 2½X1ðyÞ þX2ðyÞ�4

� �
=xGV ðx; yÞd

3y; x 2 V :

One then arrives to the grand conclusion that sound radiated from any steady source in any environment, is conducted by
the wave field according to boundary conditions along trajectories with average velocity U, which is completely determined
by reverberation and rotation of energy, the latter being related to both angular momentum and to non-uniform energy
distribution.

7. Conclusions

The main results of the present paper can be summarized in the following points:
(1)
 Any acoustical steady state in an enclosure begins its decay at any point x0, being driven by an exponential function of
time with rate constant k ¼ j= � Uðx0;0Þj, where U is the mean energy velocity.
(2)
 The statement (1) has been confirmed experimentally both for 1-D and 3-D environments. Specifically in a tube of
dimensions 0:28� 0:28� 4 m3 with varying absorption properties and in a small room with a 104 m3 volume. Other
experiments, showed similar results (see Ref. [18]).
(3)
 We have found an expression for the distribution of the energy velocity field UðxÞ, showing how it depends not only on
the time constant t0, but also on the distribution of angular momentum and on the non-uniformity of the energy
density.
In conclusion, it can be said that the energy velocity field is one of the most pervasive concepts in acoustics and a
powerful tool for modeling the energetics of any sound field. Moreover, it can be determined experimentally by means of
the modern hyper-intensimetric techniques based on pressure–velocity probes, so allowing, in particular, the precise
definition and measurement of reverberation time on a firm physical basis.
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[12] W.C. Sabine, Collected Papers on Acoustics Chapter 1 ‘‘Reverberation’’, third Impression, Harvard University Press, Cambridge, MA, USA, 1927, pp. 3–68.
[13] W.B. Joyce, Sabine’s reverberation time and ergodic auditoriums, J. Acoust. Soc. Am. 58 (3) (1975) 643–655.
[14] K.H. Kuttruff, Sound decay in enclosures with non-diffuse sound field, Proceedings of W. A. Sabine Centennial Symposium, Cambridge, MIT, MA, USA,

5–7 June 1994, pp. 85–88.
[15] G. Sacchi, D. Stanzial, A new method for axial p2v probe calibration, Proceedings of XVI International Congress of Sound and Vibration (ICSV), Kraców,

5–7 July 2009, Session S35, paper 765.
[16] F. Jacobsen, V. Jaud, A note on the calibration of pressure velocity sound intensity probes, J. Acoust. Soc. Am. 120 (2) (2006) 830–837.
[17] J. Wolfe, J. Smith, J. Tann, N. H Fletcher, Acoustic impedance of classical and modern flutes, J. Sound Vib. 243 (2001) 127–144.
[18] D. Stanzial, Sabine’s formula revisited with acoustic quadraphony, Proceedings of the 19th International Congress on Acoustics, Madrid 2–7 September

2007. Revised Edition—/http://www.sea-acustica.es/WEB_ICA_07/fchrs/papers/rba-16-003.pdfS.

http://www.sea-acustica.es/WEB_ICA_07/fchrs/papers/rba-16-003.pdf

	On the connection between energy velocity, reverberation time and angular momentum
	Introduction
	The average energy trajectories
	Energy density evolution along trajectories and reverberation time
	Does the angular momentum of acoustic fields influence the reverberation time?
	Experimental estimate of reverberation time from the exponential initial decay
	1-D case study
	3-D case study

	The concept of wave conductance and its connection to reverberation time and rotational energy
	Conclusions
	References




